Group Theory

Definition of Group

Order of Group

Group Z×p

The multiplicative group Zp×Z^{\times}_p is a group containing integers between 1 and p - 1 (p is a prime number): Zp×=1,2,....p1 , where p is a prime number. Z^{\times}_p = { 1, 2, .... p-1 } \text { , where } p \text{ is a prime number.} and the basic operation of this group is multiplication. By taking the remainder on division by pp, the results of multiplication of elements is ensured closure and limited between 1 to p - 1.

Multiplicative Group of Integers Modulo p

Examples

Let G={1,2,3,4}G = \{ 1, 2, 3, 4 \} with prime p=5p = 5 and generator g=2g = 2.

21mod5=222mod5=22mod5=423mod5=42mod5=324mod5=32mod5=125mod5=12mod5=2 \begin{aligned} 2^1 \bmod 5 &= 2 \\ 2^2 \bmod 5 &= 2 \cdot 2 \bmod 5 \\ &= 4 \\ 2^3 \bmod 5 &= 4 \cdot 2 \bmod 5 \\ &= 3 \\ 2^4 \bmod 5 &= 3 \cdot 2 \bmod 5 \\ &= 1 \\ 2^5 \bmod 5 &= 1 \cdot 2 \bmod 5 \\ &= 2 \end{aligned}

power value
1 2
2 4
3 3
4 1
5 2

Let G={1,2,3,4,5,6,7}G = \{ 1, 2, 3, 4, 5, 6, 7 \} with prime p=7p = 7 and generator g=3g = 3.

31mod5=332mod5=33mod7=233mod5=23mod7=634mod5=63mod7=435mod5=43mod7=536mod5=53mod7=137mod5=13mod7=3 \begin{aligned} 3^1 \bmod 5 &= 3 \\ 3^2 \bmod 5 &= 3 \cdot 3 \bmod 7 \\ &= 2 \\ 3^3 \bmod 5 &= 2 \cdot 3 \bmod 7 \\ &= 6 \\ 3^4 \bmod 5 &= 6 \cdot 3 \bmod 7 \\ &= 4 \\ 3^5 \bmod 5 &= 4 \cdot 3 \bmod 7 \\ &= 5 \\ 3^6 \bmod 5 &= 5 \cdot 3 \bmod 7 \\ &= 1 \\ 3^7 \bmod 5 &= 1 \cdot 3 \bmod 7 \\ &= 3 \end{aligned}

power value
1 3
2 2
3 6
4 4
5 5
6 1
7 3

Let G={x0<x<23xN}G = \{ x \vert 0 < x < 23 \cap x \in N \} with prime p=23p = 23 and generator g=5g = 5.

51mod23=552mod23=55mod23=253mod23=25mod23=1054mod23=105mod23=455mod23=45mod23=2056mod23=205mod23=857mod23=85mod23=1758mod23=175mod23=1659mod23=165mod23=11510mod23=115mod23=9511mod23=95mod23=22512mod23=225mod23=18513mod23=185mod23=21514mod23=215mod23=13515mod23=85mod23=19516mod23=195mod23=3517mod23=35mod23=15518mod23=155mod23=6519mod23=65mod23=7520mod23=75mod23=12521mod23=125mod23=14522mod23=145mod23=1523mod23=15mod23=5 \begin{aligned} 5^1 \bmod 23 &= 5 \\ 5^2 \bmod 23 &= 5 \cdot 5 \bmod 23 \\ &= 2 \\ 5^3 \bmod 23 &= 2 \cdot 5 \bmod 23 \\ &= 10 \\ 5^4 \bmod 23 &= 10 \cdot 5 \bmod 23 \\ &= 4 \\ 5^5 \bmod 23 &= 4 \cdot 5 \bmod 23 \\ &= 20 \\ 5^6 \bmod 23 &= 20 \cdot 5 \bmod 23 \\ &= 8 \\ 5^7 \bmod 23 &= 8 \cdot 5 \bmod 23 \\ &= 17 \\ 5^8 \bmod 23 &= 17 \cdot 5 \bmod 23 \\ &= 16 \\ 5^9 \bmod 23 &= 16 \cdot 5 \bmod 23 \\ &= 11 \\ 5^{10} \bmod 23 &= 11 \cdot 5 \bmod 23 \\ &= 9 \\ 5^{11} \bmod 23 &= 9 \cdot 5 \bmod 23 \\ &= 22 \\ 5^{12} \bmod 23 &= 22 \cdot 5 \bmod 23 \\ &= 18 \\ 5^{13} \bmod 23 &= 18 \cdot 5 \bmod 23 \\ &= 21 \\ 5^{14} \bmod 23 &= 21 \cdot 5 \bmod 23 \\ &= 13 \\ 5^{15} \bmod 23 &= 8 \cdot 5 \bmod 23 \\ &= 19 \\ 5^{16} \bmod 23 &= 19 \cdot 5 \bmod 23 \\ &= 3 \\ 5^{17} \bmod 23 &= 3 \cdot 5 \bmod 23 \\ &= 15 \\ 5^{18} \bmod 23 &= 15 \cdot 5 \bmod 23 \\ &= 6 \\ 5^{19} \bmod 23 &= 6 \cdot 5 \bmod 23 \\ &= 7 \\ 5^{20} \bmod 23 &= 7 \cdot 5 \bmod 23 \\ &= 12 \\ 5^{21} \bmod 23 &= 12 \cdot 5 \bmod 23 \\ &= 14 \\ 5^{22} \bmod 23 &= 14 \cdot 5 \bmod 23 \\ &= 1 \\ 5^{23} \bmod 23 &= 1 \cdot 5 \bmod 23 \\ &= 5 \end{aligned}

power value
1 5
2 2
3 10
4 4
5 20
6 8
7 17
8 16
9 11
10 9
11 22
12 18
13 21
14 13
15 19
16 3
17 15
18 6
19 7
20 12
21 14
22 1
23 5

Schnorr group

A Schnorr group is a subgroup of Zp×Z^{\times}_p, the multiplicative group of integers modulo pp for some large prime pp.

The group can be generated by choosing p,q,rp, q, r such that p=qr+1 ,where q,rare also prime p = qr + 1 \text{ ,where } q, r \text{are also prime} Then choose any h,1<h<ph, 1 < h < p such that hr1(modp) h^r \neq 1 \pmod p The value g=hrmodp g = h^r \bmod p is the generator of a Zp×Z^{\times}_p with prime order q q.

Examples

Let q=11,r=2,p=23q = 11, r = 2, p = 23. Then we choose a hh such that h2mod231h^2 \bmod 23 \neq 1, where 1<h<231 < h < 23. Suppose we select h=3h = 3, then generator g=9g = 9.

91mod23=992mod23=99mod23=1293mod23=129mod23=1694mod23=169mod23=695mod23=69mod23=896mod23=89mod23=397mod23=39mod23=498mod23=49mod23=1399mod23=139mod23=2910mod23=29mod23=18911mod23=189mod23=1 \begin{aligned} 9^1 \bmod 23 &= 9 \\ 9^2 \bmod 23 &= 9 \cdot 9 \bmod 23 \\ &= 12 \\ 9^3 \bmod 23 &= 12 \cdot 9 \bmod 23 \\ &= 16 \\ 9^4 \bmod 23 &= 16 \cdot 9 \bmod 23 \\ &= 6 \\ 9^5 \bmod 23 &= 6 \cdot 9 \bmod 23 \\ &= 8 \\ 9^6 \bmod 23 &= 8 \cdot 9 \bmod 23 \\ &= 3 \\ 9^7 \bmod 23 &= 3 \cdot 9 \bmod 23 \\ &= 4 \\ 9^8 \bmod 23 &= 4 \cdot 9 \bmod 23 \\ &= 13 \\ 9^9 \bmod 23 &= 13 \cdot 9 \bmod 23 \\ &= 2 \\ 9^{10} \bmod 23 &= 2 \cdot 9 \bmod 23 \\ &= 18 \\ 9^{11} \bmod 23 &= 18 \cdot 9 \bmod 23 \\ &= 1 \\ \end{aligned}

From above, we can verify the the generator g=9g = 9 whose order is q=11q = 11 such that gq=1g^q = 1. In summary, the above equations can be organized into the following table:

power value
1 9
2 12
3 16
4 6
5 8
6 3
7 4
8 13
9 2
10 18
11 1

Therefore, we have a Schnorr group G={1,2,3,4,6,8,9,12,13,16,18}G = \{1, 2, 3, 4, 6, 8, 9, 12, 13, 16, 18 \} with prime order q=11q = 11, modulo p=23p = 23 and generator g=9g = 9, which is a subgroup of Zp×=Z23×={x0<x<23xN}Z^{\times}_p = Z^{\times}_{23} = \{ x \vert 0 < x < 23 \cap x \in N \}.

References

results matching ""

    No results matching ""