Group Theory
Definition of Group
Order of Group
Group Z×p
The multiplicative group Zp× is a group
containing integers between 1 and p - 1 (p is a prime number):
Zp×=1,2,....p−1 , where p is a prime number.
and the basic operation of this group is multiplication.
By taking the remainder on division by p,
the results of multiplication of elements is ensured closure
and limited between 1 to p - 1.
Multiplicative Group of Integers Modulo p
Examples
Let G={1,2,3,4} with prime p=5 and generator g=2.
21mod522mod523mod524mod525mod5=2=2⋅2mod5=4=4⋅2mod5=3=3⋅2mod5=1=1⋅2mod5=2
power |
value |
1 |
2 |
2 |
4 |
3 |
3 |
4 |
1 |
5 |
2 |
Let G={1,2,3,4,5,6,7}
with prime p=7 and generator g=3.
31mod532mod533mod534mod535mod536mod537mod5=3=3⋅3mod7=2=2⋅3mod7=6=6⋅3mod7=4=4⋅3mod7=5=5⋅3mod7=1=1⋅3mod7=3
power |
value |
1 |
3 |
2 |
2 |
3 |
6 |
4 |
4 |
5 |
5 |
6 |
1 |
7 |
3 |
Let G={x∣0<x<23∩x∈N}
with prime p=23 and generator g=5.
51mod2352mod2353mod2354mod2355mod2356mod2357mod2358mod2359mod23510mod23511mod23512mod23513mod23514mod23515mod23516mod23517mod23518mod23519mod23520mod23521mod23522mod23523mod23=5=5⋅5mod23=2=2⋅5mod23=10=10⋅5mod23=4=4⋅5mod23=20=20⋅5mod23=8=8⋅5mod23=17=17⋅5mod23=16=16⋅5mod23=11=11⋅5mod23=9=9⋅5mod23=22=22⋅5mod23=18=18⋅5mod23=21=21⋅5mod23=13=8⋅5mod23=19=19⋅5mod23=3=3⋅5mod23=15=15⋅5mod23=6=6⋅5mod23=7=7⋅5mod23=12=12⋅5mod23=14=14⋅5mod23=1=1⋅5mod23=5
power |
value |
1 |
5 |
2 |
2 |
3 |
10 |
4 |
4 |
5 |
20 |
6 |
8 |
7 |
17 |
8 |
16 |
9 |
11 |
10 |
9 |
11 |
22 |
12 |
18 |
13 |
21 |
14 |
13 |
15 |
19 |
16 |
3 |
17 |
15 |
18 |
6 |
19 |
7 |
20 |
12 |
21 |
14 |
22 |
1 |
23 |
5 |
Schnorr group
A Schnorr group is a subgroup of Zp×,
the multiplicative group of integers modulo p for some large prime p.
The group can be generated by choosing p,q,r such that
p=qr+1 ,where q,rare also prime
Then choose any h,1<h<p such that
hr≠1(modp)
The value
g=hrmodp
is the generator of a Zp× with prime order q.
Examples
Let q=11,r=2,p=23.
Then we choose a h such that h2mod23≠1, where 1<h<23.
Suppose we select h=3, then generator g=9.
91mod2392mod2393mod2394mod2395mod2396mod2397mod2398mod2399mod23910mod23911mod23=9=9⋅9mod23=12=12⋅9mod23=16=16⋅9mod23=6=6⋅9mod23=8=8⋅9mod23=3=3⋅9mod23=4=4⋅9mod23=13=13⋅9mod23=2=2⋅9mod23=18=18⋅9mod23=1
From above, we can verify the the generator g=9
whose order is q=11 such that gq=1.
In summary, the above equations can be organized into the following table:
power |
value |
1 |
9 |
2 |
12 |
3 |
16 |
4 |
6 |
5 |
8 |
6 |
3 |
7 |
4 |
8 |
13 |
9 |
2 |
10 |
18 |
11 |
1 |
Therefore, we have a Schnorr group G={1,2,3,4,6,8,9,12,13,16,18}
with prime order q=11, modulo p=23 and generator g=9,
which is a subgroup of Zp×=Z23×={x∣0<x<23∩x∈N}.
References